目的:通过“一对三阶”培训模式研究达芬奇手术机器人专科护士的学习曲线,为机器人护理团队建设提供临床参考。 方法:选取 2020 年 11 月 1 日—2021 年 12 月 1 日在海军军医大学第一附属医院机器人手术中心完成的 64 例机器人辅助手 术,随机分为 A 组(n=32)和 B 组(n=32)。A 组由 1 名高年资护士担任巡回护士,1 名新护士担任洗手护士。B 组由 1 名 新护士担任巡回护士,1 名高年资护士担任洗手护士。通过“一对三阶”培训后,记录并比较两组术前准备时间、建立无菌 屏障时间和术后撤机时间,寻找学习平台期,绘制新护士达芬奇手术机器人专科培训的学习曲线。结果:新护士作为洗手护 士时,需要进行 15 例术前设备连接以及无菌台车准备和 20 例无菌臂套准备,才能达到学习平台期;作为巡回护士时,需要 进行 24 例术后撤机及器械记录等工作,才能达到学习平台期。结论:通过“一对三阶”培训模式,新护士需经历约 20 例达 芬奇机器人辅助手术才可以熟练掌握洗手及巡回工作。
Objective: To investigate the learning curve of Da Vinci robotic specialty nurses through the“one-to-one and three steps” training model, providing clinical insights for the development of robotic nursing teams. Methods: 64 cases of robot-assisted surgeries performed at the First Affiliated Hospital to Naval Medical University from November 1, 2020 to December 1, 2021 were included. They were randomly divided into the group A (n=32) and the group B (n=32). In the group A, one senior nurse acted as the circulating nurse and one novice nurse as the scrub nurse. In the group B, one novice nurse served as the circulating nurse and one senior nurse as the scrub nurse. After implementing the“one-to-one and three steps”training model, preoperative preparation time, sterile barrier establishment time, and postoperative shutdown time were recorded and compared between the two groups to identify the learning plateau. Then the learning curve for novice nurses in Da Vinci robotic specialty training were plotted. Results: When novice nurses acted as scrub nurses, 15 cases of preoperative device connection and sterile material trolley preparation, and 20 cases of sterile arm sleeve preparation were required to reach the learning plateau. When novice nurses acted as circulating nurses, 24 cases of postoperative shutdown and instrument documentation were needed to achieve the plateau. Conclusion: Through the“one-to-one and three steps”training model, novice nurses require approximately 20 Da Vinci robot-assisted surgery cases to proficiently master both scrub and circulating roles.
基金项目:上海市第四人民医院学科助推计划(SY-XKZT-2022-2013)
Foundation Item: Shanghai Fourth People’s Hospital Discipline Booster Program(SY-XKZT-2022-2013)
引用格式:盛夏,王彦,李沪生,等 .“一对三阶”培训模式下达芬奇手术机器人专科护士学习曲线分析 [J]. 机器人外科学杂志(中英文), 2025,6(4):674-678,685.
Citation: SHENG X, WANG Y, LI H S, et al. Analysis on the learning curve of Da Vinci robotic specialty nurses through the“one-to-one and three steps”training model[J]. Chinese Journal of Robotic Surgery, 2025, 6(4): 674-678, 685.
通讯作者(Corresponding Author):张芹芹(ZHANG Qinqin),Email:986801292@qq.com
[1] 冯淑杰 , 曲波 , 聂夏子 , 等 . 机器人手术在妇科领域的应用现状及进 展 [J]. 机器人外科学杂志 ( 中英文 ), 2020, 1(3): 212-219.
[2] 沈瑜 , 韩瑶华 , 赵青 , 等 . 达芬奇机器人辅助胸腔镜肺部手术护理配 合中常见机器人设备相关问题的回顾性分析 [J]. 机器人外科学杂志 ( 中英文 ), 2021, 2(1): 17-22.
[3] 房明扬 , 乌新林 . 达芬奇机器人胃癌根治术的研究进展 [J]. 腹腔镜外 科杂志 , 2021, 26(1): 74-76.
[4] 王林辉 , 吴震杰 , 朱清毅 . 中国泌尿外科单孔腹腔镜技术的发展与展 望 [J]. 中华泌尿外科杂志 , 2020, 41(11): 807-810.
[5] 赵诗葳 , 金佳斌 , 施昱晟 , 等 . 机器人辅助胰十二指肠切除术手术流 程 [J]. 机器人外科学杂志 ( 中英文 ), 2020, 1(1): 61-69.
[6] 鲁欣 , 王燕 , 王磊 . 进阶式培训模式在前列腺癌根治术中的价值和临 床应用 [J]. 中国卫生产业 , 2018, 15(20): 95-96,
100.
[7] ZHANG X Q, RONG X Y, LUO H W. Optimizing lower limb rehabilitation: the intersection of machine learning and rehabilitative robotics[J]. Front Rehabil Sci, 2024(5): 1246773.
[8] 张彩虹 , 杜洋 . 手术室临床带教模式研究新进展 [J]. 全科护理 , 2018, 16(23): 2860-2862.
[9] 唐鲁 , 郭志红 , 朱国雄 , 等 . 香港达芬奇机器人手术护士培训课程介 绍 [J]. 护理学杂志 , 2015, 30(14): 15-17.
[10] Sacks D, Baxter B, Campbell B C V, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic atroke[J]. Int J Stroke, 2018, 13(6): 612-632.
[11] ZHAO J, ZHONG M, HU M. PP445 Mapping the trend of the Da Vinci surgical system use in China[J]. Int J Technol Assess Health Care, 2020, 36(S1): 36.
[12] 刘意抒 , 蔡丽萍 , 李建萍等 . 达芬奇手术机器人培训开展情况分析 [J]. 解放军医院管理杂志 , 2018, 25(7): 652-654.
[13] 张红萍 . 我国达芬奇手术机器人在肿瘤外科应用的文献计量分析 [J]. 中国肿瘤外科杂志 , 2020, 12(6): 543-547.
[14] Sridhar A N, Briggs T P, Kelly J D, et al. Training in robotic surgery-an overview[J]. Curr Urol Rep, 2017, 18(8): 58.
[15] WANG Z, LI Q F, KOU L, et al. Bipedal robot gait generation using bessel interpolation[J]. Biomimetics (Basel), 2024, 9(4): 201.
[16] Ratti F, Ingallinella S, Catena M, et al. Learning curve in robotic liver surgery: easily achievable, evolving from laparoscopic background and team-based[J]. HPB (Oxford), 2025, 27(1): 45-55.
[17] Jonsson A, Binongo J, Patel P, et al. Mastering the learning curve for robotic-assisted coronary artery bypass surgery[J]. Ann Thorac Surg, 2023, 115(5): 1118-1125.
[18] Lee H, Kim J, Kim S, et al. Investigating the need for point-of-care robots to support teleconsultation[J]. Telemed J E Health, 2019, 25(12): 1165-1173.
[19] Shaikh H J F, Hasan S S, Woo J J, et al. Exposure to extended reality and artificial intelligence-based manifestations: a primer on the future of hip and knee arthroplasty[J]. J Arthroplasty, 2023, 38(10): 2096-2104.
[20] Redondo-Sáenz D, Cortés-Salas C, Parrales-Mora M. Perioperative nursing role in robotic surgery: an integrative review[J]. J Perianesth Nurs, 2023, 38(4): 636-641.
[21] Wilson M G, Adams C N, Turnbull M D, et al. Improving certified registered nurse anesthetists’ adherence to a standardized intraoperative lung protective ventilation protocol[J]. J Perianesth Nurs, 2023, 38(6): 845-850.
[22] Dall’Olio T, Perri G, Reese T, et al. Implementation of a robotic hepato-pancreato-biliary surgery program: a swedish referral center’s experience[J]. J Robot Surg, 2025, 19(1): 101.
[23] 张芹芹 , 王燕 , 陆益 , 等 . 新型国产腔镜机器人在前列腺根治术中的医 护配合探讨 [J]. 中华腔镜泌尿外科杂志 ( 电子版 ), 2023, 17(1): 26-29.
[24] 张芹芹 , 宋丽 , 薛庆 , 等 . 基于遗忘曲线的情景模拟培训在泌尿外科 机器人手术专科护士中的应用 [J]. 中华现代护理杂志 , 2023, 29(16): 2227-2230.