目的:通过系统评价和 Meta 分析综合判断虚拟现实(VR)技术在机器人手术培训中的效果。方法:计算机检索 PubMed、The Cochrane Library、Elsevier、中国知网(CNKI)数据库中有关“在机器人手术模拟培训中应用 VR 技术”的文献, 检索时限为 2000 年 1 月 1 日—2024 年 10 月 1 日,筛选符合纳入标准的文献,使用 Cochrane 偏倚风险评估工具评估纳入文 献质量,采用 RevMan 5.4 软件进行 Meta 分析。结果:共纳入 10 篇文献 273 例研究对象。Meta 分析结果提示,与传统培训 方式相比,VR 模拟机器人手术培训在 GEARS 评分、任务完成时间、时间评分等方面均有提高,差异有统计学意义(P<0.05)。 结论:VR 技术有利于机器人手术技能习得,尽管目前无更多证据证明 VR 培训优于其他培训方式,但是其低成本、可重复 及评分反馈等优势均表现出其极大的发展潜力。
Objective: To comprehensively evaluate the benefits of virtual reality (VR) technology in robotic surgical training through systematic review and Meta-analysis. Methods: Literature on the application of VR technology in robotic surgical simulation training was retrieved from PubMed, The Cochrane Library, Elsevier, and the China National Knowledge Infrastructure (CNKI) databases, with a search spanning from January 1, 2000 to October 1, 2024. Eligible studies were screened based on inclusion criteria. The Cochrane Risk of Bias Assessment Tool was used to evaluate the quality of included literature, and RevMan 5.4 software was used for Meta-analysis. Results: A total of 10 studies involving 273 participants were included. Meta-analysis results indicated that VR-based robotic surgical simulation training showed statistically significant improvements in GEARS scores, task completion time, and time-based scores compared to traditional training methods (P<0.05). Conclusion: VR technology can facilitate the acquisition of robotic surgical skills. While there is currently limited evidence to confirm the superiority of VR training over other methods, its advantages such as low cost, repeatability, and scoring feedback have shown significant development potential.
基金项目:国家重点研发计划(2022YFB4700800)
Foundation Item: National Key R&D Plan Project of China (2022YFB4700800)
引用格式:梁渝靖,李阳辉,邢文惠,等. 虚拟现实技术用于机器人手术技能培训效果的系统评价与Meta分析 [J]. 机器人外科学杂志(中英文), 2025,6(4):667-673.
Citation: LIANG Y J, LI Y H, XING W H, et al. Efficacy of VR in robotic surgical skill training: a systematic review and Meta-analysis [J]. Chinese Journal of Robotic Surgery, 2025, 6(4): 667-673.
通讯作者(Corresponding Author):王嵘(WANG Rong),E-mail:wangrongd@126.com
[1] Stefanidis D, Wang F, Korndorffer J R, et al. Robotic assistance improves intracorporeal suturing performance and safety in the operating room while decreasing operator workload[J]. Surg Endosc, 2010, 24(2): 377-382.
[2] Fisher R A, Dasgupta P, Mottrie A, et al. An over-view of robot assisted surgery curricula and the status of their validation[J]. Int J Surg, 2015, 13: 115-123.
[3] Satava R M, Stefanidis D, Levy J S, et al. Proving the Effectiveness of the Fundamentals of Robotic Surgery (FRS) Skills Curriculum: A Singleblinded, Multispecialty, Multi-institutional Randomized Control Trial[J]. Ann Surg, 2020, 272(2): 384-392.
[4] Sutherland J, Belec J, Sheikh A, et al. Applying modern virtual and augmented reality technologies to medical images and models[J]. J Digit Imaging, 2019, 32(1): 38-53.
[5] Slater M. Immersion and the illusion of presence in virtual reality[J]. Br J Psychol, 2018, 109(3): 431-433.
[6] Seymour N E, Gallagher A G, Roman S A, et al. Virtual reality training improves operating room performance: results of a randomized, doubleblinded study[J]. Ann Surg, 2002, 236(4): 458-464.
[7] Pellegrini C A, Sachdeva A K, Johnson K A. Accreditation of education institutes by the American College of Surgeons: a new program following an old tradition[J]. Bull Am Coll Surg, 2006, 91(3): 8-12.
[8] Flavián C, Ibáñez-Sánchez S, Orús C. The impact of virtual, augmented and mixed reality technologies on the customer experience[J]. J Bus Res, 2019, 100: 547-560.
[9] Pugin F, Bucher P, Morel P. History of robotic surgery: from AESOP® and ZEUS® to da Vinci® [J]. J Visc Surg, 2011, 148(5 Suppl): e3-e8.
[10] Liakos N, Moritz R, Leyh-Bannurah S R, et al. Chicken RAPS: Chicken robot-assisted pyeloplasty simulation. Validation study of a novel chicken model for wet laboratory training in robot-assisted pyeloplasty[J]. Eur Urol Open Sci, 2022, 46: 82-87.
[11] Lee C S, Khan M T, Patnaik R, et al. Model development of a novel robotic surgery training exercise with electrocautery[J]. Cureus, 2022, 14(4): e24531.
[12] Moglia A, Ferrari V, Morelli L, et al. A systematic review of virtual reality simulators for robot-assisted surgery[J]. Eur Urol, 2016, 69(6): 1065-1080.
[13] Chowriappa A, Raza S J, Fazili A, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial: augmented-reality-based procedure specific training[J]. BJU Int, 2015, 115 (2): 336-345.
[14] Valdis M, Chu M W A, Schlachta C, et al. Evaluation of robotic cardiac surgery simulation training: a randomized controlled trial[J]. The Journal of Thoracic and Cardiovascular Surgery, 2016, 151(6): 1498-1505.
[15] Raison N, Harrison P, Abe T, et al. Procedural virtual reality simulation training for robotic surgery: a randomised controlled trial[J]. Surg Endosc, 2021, 35(12): 6897-6902.
[16] Vaccaro C M, Crisp C C, Fellner A N, et al. Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone: a randomized controlled trial[J]. Female Pelvic Medicine & Reconstructive Surgery, 2013, 19(5): 266-270.
[17] Amirian M J, Lindner S M, Trabulsi E J, et al. Surgical suturing training with virtual reality simulation versus dry lab practice: an evaluation of performance improvement, content, and face validity[J]. J Robotic Surg, 2014, 8(4): 329-335.
[18] Vargas M V, Moawad G, Denny K, et al. Transferability of virtual reality, simulation-based, robotic suturing skills to a live porcine model in novice surgeons: a single-blind randomized controlled trial[J]. Journal of Minimally Invasive Gynecology, 2017, 24 (3): 420-425.
[19] Valdis M, Chu M W A, Schlachta C M, et al. Validation of a novel virtual reality training curriculum for robotic cardiac surgery a randomized trial[J]. Innovations(Phila), 2015, 10 (6): 383-388.
[20] Almarzouq A, Hu J, Noureldin Y A, et al. Are basic robotic surgical skills transferable from the simulator to the operating room? A randomized, prospective, educational study[J]. Can Urol Assoc J, 2020, 14(12): 416-422.
[21] Butterworth J, Sadry M, Julian D, et al. Assessment of the training program for Versius, a new innovative robotic system for use in minimal access surgery[J]. BMJ Surg Interv Health Technol, 2021, 3(1): e000057.
[22] Kiely D J, Gotlieb W H, Lau S, et al. Virtual reality robotic surgery simulation curriculum to teach robotic suturing: a randomized controlled trial[J]. J Robotic Surg, 2015, 9(3): 179-186.
[23] Julian Higgins, James Thomas. Cochrane handbook for systematic reviews of interventions[M]. Version 6.5. United Kingdom: Wiley, 1996, 100-462.
[24] Goh A C, Goldfarb D W, Sander J C, et al. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills[J]. J Urol, 2012, 187(1): 247-252.
[25] Boal M W E, Anastasiou D, Tesfai F, et al. Evaluation of objective tools and artificial intelligence in robotic surgery technical skills assessment: a systematic review[J]. Br J Surg, 2024, 111(1): znad331.
[26] Wilcox Vanden Berg R N, Vertosick E A, Sjoberg D D, et al. Implementation and validation of an automated, longitudinal robotic surgical evaluation and feedback program at a high-volume center and impact on training[J]. Eur Urol Open Sci, 2024, 62: 81-90.
[27] Tom C M, Maciel J D, Korn A, et al. A survey of robotic surgery training curricula in general surgery residency programs: How close are we to a standardized curriculum? [J]. Am J Surg, 2019, 217(2): 256-260.
[28] Abreu A A, Rail B, Farah E, et al. Baseline performance in a robotic virtual reality platform predicts rate of skill acquisition in a proficiencybased curriculum: a cohort study of surgical trainees[J]. Surg Endosc, 2023, 37(11): 8804-8809.
[29] Lu J, Cuff R F, Mansour M A. Simulation in surgical education[J]. Am J Surg, 2021, 221(3): 509-14.
[30] Alvarez-Lopez F, Maina M F, Arango F, et al. Use of a low-cost portable 3d virtual reality simulator for psychomotor skill training in minimally invasive surgery: task metrics and score validity[J]. JMIR Serious Games, 2020, 8(4): e19723.