近年来,随着国内外相关学者对骨科手术机器人的不断研究,骨科手术机器人在临床中的应用已成为研究热点,并获 得了较好的发展。骨科手术机器人具有较高的定位精准性和操作稳定性,有利于减少患者的手术射线暴露和术中并发症发生 率,具有较高的临床应用价值。本研究主要对骨科手术机器人在脊柱外科领域中的应用进展进行了综述,分析了骨科手术机 器人的研究现状、关键技术、临床优势及未来发展方向。
In recent years, with continuous research into orthopedic surgical robots by domestic and international scholars, their clinical application has become a major focus and achieved significant advancements. With high positioning accuracy and operational stability, orthopedic surgical robots can help reduce surgeons’ intraoperative radiation exposure and lower the incidence of complications, highlighting their substantial clinical value. The progress in the application of orthopedic surgical robots in spinal surgery was reviewed in this paper, and their current research status, key technologies, clinical advantages, and future development directions were analyzed.
基金项目:广东省自然科学基金项目(2018A030313500)
Foundation Item: Natural Science Foundation of Guangdong Province (2018A030313500)
引用格式:孙金贵,晏欢欣,司泽兵,等 . 骨科手术机器人在脊柱外科手术中的应用及研究进展 [J]. 机器人外科学杂志(中英文),2025, 6(4):547-551.
Citation: SUN J G, YAN H X, SI Z B, et al. Application and research progress of orthopaedic surgical robot in spinal surgery[J]. Chinese Journal of Robotic Surgery, 2025, 6(4): 547-551.
通讯作者(Corresponding Author):胡孔和(HU Konghe),Email:hkhgksq@126.com
[1] Heo D H, Kim J Y, Park J Y, et al. Clinical experiences of 3-dimensional biportal endoscopic spine surgery for lumbar degenerative disease[J]. Oper Neurosurg (Hagerstown), 2022, 22(4): 231-238.
[2] Lacroix M, Nguyen C, Burns R, et al. Degenerative lumbar spine disease: imaging and biomechanics[J]. Semin Musculoskelet Radiol, 2022, 26(4): 424-438.
[3] Byvaltsev V A, Kalinin A A, Shepelev V V, et al. Long-term results and predictors of postoperative outcomes in patients with cauda equina syndrome following degenerative lumbar spine disease[J]. Zh Vopr Neirokhir Im N N Burdenko, 2023, 87(1): 35-43.
[4] CHEN T Z, LU X J, WU D Z, et al. Efficacy of minimally invasive transforaminal lumbar interbody fusion plus cement-augmented pedicle screw fixation in the treatment of degenerative lumbar spine disease with osteoporosis in the elderly[J]. Eur Rev Med Pharmacol Sci, 2023, 27(14): 6573-6582.
[5] FAN M X, FANG Y M, ZHANG Q, et al. A prospective cohort study of the accuracy and safety of robot-assisted minimally invasive spinal surgery[J]. BMC Surg, 2022, 22(1): 47.
[6] SHEN H, ZHOU J L, YU L P. Cervical pedicle screw fixation with the Tianji orthopedic surgical robot[J]. J Orthop Surg Res, 2025, 20(1): 131.
[7] LI Q Q, GU G H, WANG L, et al. Using EMG signals to assess proximity of instruments to nerve roots during robot-assisted spinal surgery[J]. Int J Med Robot, 2022, 18(4): e2408.
[8] Davidar A D, Jiang K, Weber-Levine C, et al. Advancements in roboticassisted spine surgery[J]. Neurosurg Clin N Am, 2024, 35(2): 263-272.
[9] Kuris E O, Anderson G M, Alsoof D, et al. Robotic spine surgery in Rhode island[J]. R I Med J (2013), 2023, 106(1): 58-62.
[10] Cowley G. Introducing "Robodoc". A robot finds his calling-in the operating room[J]. Newsweek, 1992, 120(21): 86.
[11] Elswick C M, Strong M J, Joseph J R, et al. Robotic-assisted spinal surgery: current generation instrumentation and new applications[J]. Neurosurg Clin N Am, 2020, 31(1): 103-110.
[12] 张鹤 , 韩建达 , 周跃 . 脊柱微创手术机器人系统辅助打孔的实验研 究 [J]. 中华创伤骨科杂志 , 2011, 13(12): 1166-1169.
[13] 靳海洋 , 邓震 , 王宇 , 等 . RSSS-Ⅱ脊柱手术机器人系统开发及其实 验研究 [J]. 集成技术 , 2016, 5(1): 75-84.
[14] 张波 , 王晋超 , 宋卿鹏 , 等 . 天玑骨科手术机器人辅助退行性脊柱侧 弯手术的疗效分析 [J]. 北京生物医学工程 , 2022, 41(3): 286-291.
[15] 郑博隆 , 郝定均 , 林斌 , 等 . “天玑”骨科手术机器人辅助与徒手穿 刺椎体成形术治疗上胸椎骨质疏松性椎体压缩骨折的疗效比较 [J]. 中华创伤骨科杂志 , 2021, 23(1): 20-26.
[16] Prakash R, Agrawal Y. Robotic technology in total knee arthroplasty[J]. Br J Hosp Med (Lond), 2023, 84(6): 1-9.
[17] Cervone A, Rainey J, Sodhi N, et al. The perspectives of robotic surgeons[J]. Surg Technol Int, 2024, 44(15): 25-28.
[18] Branstetter R 4th, Piedy E, Rajendra R, et al.Navigating the intersection of technology and surgical education: advancements, challenges, and ethical considerations in orthopedic training[J]. Orthop Clin North Am, 2025, 56(1): 21-28.
[19] 夏睿 , 徐玮 , 刘雷 , 等 . 天玑骨科机器人 Tirobot 导航系统在骨盆骨折 手术中的应用 [J]. 生物骨科材料与临床研究 , 2023, 20(2): 60-64.
[20] WU Z Y, WANG L, LI Y F, et al. Head CT image segmentation and threedimensional reconstruction technology based on human anatomy[J]. Comput Intell Neurosci, 2022, 16(5): 7091476.
[21] Lee N J, Lombardi J M, Qureshi S, et al. Robot-assisted spine surgery: the pearls and pitfalls[J]. J Am Acad Orthop Surg, 2025, 33(2): e81-e92.
[22] Sabri S A, York P J. Preoperative planning for intraoperative navigation guidance[J]. Ann Transl Med, 2021, 9(1): 87.
[23] Piche J D, Muscatelli S R, Waheed M A, et al. Robotic navigation system utilization for percutaneous sacroiliac screw placement: surgical setup and technique[J]. J Spine Surg, 2021, 7(2): 197-203.
[24] ZHAO C P, CAO Q Y, SUN X, et al. Intelligent robot-assisted minimally invasive reduction system for reduction of unstable pelvic fractures[J]. Injury, 2023, 54(2): 604-614.
[25] Overley S C, Cho S K, Mehta A I, et al. Navigation and robotics in spinal surgery: where are we now[J]. Neurosurgery, 2017, 80(3S): S86-S99.
[26] Trybula S J, Oyon D E, Wolinsky J P. Robotic tissue manipulation and resection in spine surgery[J]. Neurosurg Clin N Am, 2020, 31(1): 121-129.
[27] LIN M C, LIU H W, SU Y K, et al. Robot-guided versus freehand fluoroscopy-guided minimally invasive transforaminal lumbar interbody fusion: a single-institution, observational, case-control study[J]. Neurosurg Focus, 2022, 52(1): E9.
[28] LI Y J, WEI X, LIANG Y H, et al. Robot-assisted versus fluoroscopyguided pedicle screw fixation of thoracolumbar compression fractures[J]. Medicine (Baltimore), 2023, 102(48): e36430.
[29] McIntosh M K, Christie S. Opportunities and challenges for robotic-assisted spine surgery: feasible indications for the MAZOR™ X Stealth Edition[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2023, 20(5): 1-4.
[30] Mao G, Gigliotti M J, Myers D, et al. Single-surgeon direct comparison of O-arm neuronavigation versus Mazor X robotic-guided posterior spinal instrumentation[J]. World Neurosurg, 2020, 137(10): e278-e285.
[31] Lefranc M, Peltier J. Evaluation of the ROSA™ spine robot for minimally invasive surgical procedures[J]. Expert Rev Med Devices, 2016, 13(10): 899-906.
[32] Vardiman A B, Wallace D J, Crawford N R, et al. Pedicle screw accuracy in clinical utilization of minimally invasive navigated robot-assisted spine surgery[J]. J Robot Surg, 2020, 14(3): 409-413.
[33] 阎凯 , 张琦 , 刘波 , 等 . 天玑Ⅱ机器人辅助胸腰椎椎弓根螺钉内固定 术的临床应用 [J]. 北京生物医学工程 , 2022, 41(3): 297-301.
[34] 刘莹 , 沈杰 , 刘波 , 等 . 骨科机器人辅助手术治疗腕舟骨骨折的临床 疗效观察 [J]. 北京生物医学工程 , 2023, 42(3): 283-286, 304.
[35] 张国旭 , 曾剑波 , 李静 , 等 . 骨科机器人辅助与徒手经皮骶髂螺钉固 定治疗骨盆后环骨折比较的 Meta 分析 [J]. 中国组织工程研究 , 2024, 28(18): 2932-2938.
[36] PAN M Z, CHEN Y, LI Z, et al. Autonomous path planning for robotassisted pelvic fracture closed reduction with collision avoidance[J]. Int J Med Robot, 2023, 19(2): e2483.
[37] 辛晓明 , 高明暄 , 张帆 , 等 . 骨科机器人辅助置钉在青少年特发性 脊柱侧弯矫形中的应用 [J]. 中国组织工程研究 , 2023, 27(36): 5790- 5794.
[38] TIAN W, HAN X G, LIU B, et al. A robot-assisted surgical system using a force-image control method for pedicle screw insertion[J]. PLoS One, 2014, 9(1): e86346.
[39] SUN Y, WANG L, JIANG Z L, et al. State recognition of decompressive laminectomy with multiple information in robot-assisted surgery[J]. Artif Intell Med, 2020. DOI: 10.1016/j.artmed.2019.101763.