目的:探讨经前侧入路机器人辅助胸腔镜手术(RATS)在处理复杂胸膜腔闭锁情况下的临床应用及技术优 势,报道一例右肺上叶后段(S2)切除病例。方法:患者因右肺上叶后段早期肺癌合并全胸膜腔闭锁,于 2024 年 8 月 22 日使用机器人辅助经前侧入路行外科手术治疗。术前采用三维软件规划手术方案,术中采用本团队独创的经前侧肺 切除通用入路,即“4-6-8”三孔位设计方法,在手术机器人辅助下完成胸膜粘连松解、右肺上叶后段切除术。在完成肿瘤 根治基础上最大限度保留健康肺组织、减少创伤。结果:手术顺利完成,手术时长 235 min,其中 Docking 时间 20 min,手 术机器人腔内操作时间 190 min(全胸膜粘连松解时间 110 min);出血量约 120 mL,术后轻度漏气,持续引流 10 d 后恢复, 无其他并发症发生;术后病理提示微小浸润性腺癌;患者顺利出院。结论:RATS 在复杂胸膜粘连情况下能够显著提升手术 精确度,拓宽手术适应证,同时经前侧三孔设计方法优化了手术入路和操作空间,为高难度胸外科手术提供了重要技术支持。
Objective: To explore the clinical utility and technical advantages of robot-assisted thoracoscopic surgery (RATS) via an anterior approach for complex pleural adhesions, with a case presentation of right upper lobe posterior segment (S2) resection. Methods: A patient with early-stage lung cancer in the S2 segment and diffuse pleural adhesions underwent RATS via anterior approach on August 22, 2024. Preoperative 3D surgical planning was performed. Intraoperatively, the team’s proprietary“4-6-8”three-port universal anterior approach was adopted to complete adhesiolysis and S2 segmentectomy under robotic assistance, maximizing parenchymal preservation and minimizing trauma while ensuring oncological radicality. Results: The procedure was successful, the surgery lasted 235 min; including a docking time of 20 min and a console time of 190 min (110 min for adhesiolysis). Intraoperative blood loss was 120 mL. Postoperative air leak persisted for 10 days without other complications. Pathology confirmed minimally invasive adenocarcinoma. The patient recovered uneventfully. Conclusion: RATS significantly enhances precision and expands indications for complex pleural adhesions. The anterior 3-port approach optimizes surgical access and operative space, providing critical technical support for challenging thoracic procedures.
基金项目:重庆市科卫联合医学科研项目面上项目(2025MSXM142)
Foundation Item: Chongqing Science and Health Joint Medical Research Project(2025MSXM142)
引用格式:陶绍霖,张祖旺,齐东东,等 . 机器人辅助经前侧通用入路全胸膜腔闭锁下右肺上叶后段切除术一例报道(附手术视频)[J]. 机 器人外科学杂志(中英文),2025,6(4):542-546.
Citation: TAO S L, ZHANG Z W, QI D D, et al. Robot-assisted posterior segmentectomy of the right upper lobe under total pleural cavity atresia through the anterior universal approach: a case report (with surgical video) [J]. Chinese Journal of Robotic Surgery, 2025,6(4): 542-546.
通讯作者(Corresponding Author):谭群友(TAN Qunyou),Email:tanqy001@163.com
[1] Kobayashi N, Kawamura T, Yanagihara T, et al.Impacts of pleural adhesions on lobectomies for malignant lung tumors[J].Gen Thorac Cardiovasc Surg, 2022, 70(12): 1042-1047.
[2] LI S J, ZHOU K, WU Y M, et al. Presence of pleural adhesions can predict conversion to thoracotomy and postoperative surgical complications in patients undergoing video-assisted thoracoscopic lung cancer lobectomy[J]. J Thorac Dis, 2018, 10: 416-431. DOI: 10.21037/jtd.2017.12.70.
[3] Byun C S, Lee S, Kim D J, et al. Analysis of unexpected conversion to thoracotomy during thoracoscopic lobectomy in lung cancer[J]. Ann Thorac Surg, 2015, 100: 968-973. DOI: 10.1016/j.athoracsur.2015.04.032.
[4] Mattioni G, Palleschi A, Mendogni P, et al.Approaches and outcomes of Robotic-Assisted Thoracic Surgery (RATS) for lung cancer: a narrative review[J].J Robot Surg, 2023, 17(3): 797-809.
[5] Merritt R E.Robotic segmentectomy[J]. Thorac Surg Clin, 2023, 33(1): 43-49.
[6] 陶绍霖 , 戴富强 , 梅龙勇 , 等 . 机器人辅助解剖性肺基底段切除术临 床应用的回顾性分析 [J]. 中国胸心血管外科临床杂志 , 2023, 30 (1): 65-70.
[7] Guerrero W G, González-Rivas D.Multiportal video-assisted thoracic surgery, uniportal video-assisted thoracic surgery and minimally invasive open chest surgery-selection criteria[J].J Vis Surg, 2017, 3: 56. DOI: 10.21037/jovs.2017.03.11.
[8] TAO S L, FENG Y G, KANG P M, et al.Comparison of sleeve lobectomy for lung cancer using mini-thoracotomy and an optimized robot-assisted technique[J].Technol Cancer Res Treat, 2021, 20: 15330338211051547. DOI: 10.1177/15330338211051547.
[9] NIU Z Y, CAO Y Q, DU M Y, et al.Robotic-assisted versus video-assisted lobectomy for resectable non-small-cell lung cancer: the RVlob randomized controlled trial[J].EClinical Medicine, 2024, 74: 102707. DOI: 10.1016/ j.eclinm.2024.102707.
[10] 罗清泉 , 王述民 , 李鹤成 , 等 . 机器人辅助肺癌手术中国临床专家共 识 [J]. 中国胸心血管外科临床杂志 , 2020, 27 (10): 1119-1126.
[11] JIN W J, ZHENG L, FAN X, et al. A comparison of three-port and four-port Da Vinci robot-assisted thoracoscopic surgery for lung cancer: a retrospective study[J]. J Cardiothorac Surg, 2024, 19(1): 377.
[12] Parini S, Massera F, Papalia E, et al.Port placement strategies for robotic pulmonary lobectomy: a narrative review[J].J Clin Med, 2022, 11(9): 2612.
[13] Callister M E, Baldwin D R, Akram A R, et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules[J]. Thorax, 2015, 70 Suppl 2: ii1-ii54.
[14] LI Q Q, XIAO T J, LI J D, et al.The diagnosis and management of multiple ground-glass nodules in the lung[J].Eur J Med Res, 2024, 29(1): 305.
[15] Nam J G, Goo J M .Evaluation and management of indeterminate pulmonary nodules on chest computed tomography in asymptomatic subjects: the principles of nodule guidelines[J].Semin Respir Crit Care Med, 2022, 43(6): 851-861.
[16] Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in smallsized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial[J]. Journal of Clinical Oncology, 2022, 40(24): 2551-2562.
[17] Lococo F, Ghaly G, Flamini S, et al. Artificial intelligence applications in personalizing lung cancer management: state of the art and future perspectives[J].J Thorac Dis, 2024, 16(10): 7096-7110.