Advertisement
中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

基于机器学习的人工耳蜗植入术后儿童听觉言语康复效果预测模型研究(附讲解视频)

Prediction model based on machine learning for auditory and speech rehabilitation outcomes in children after cochlear implantation (with explanatory video)

作者:白杰,李颖,金欣,晏美棂,刘海红

Vol. 6 No. 4 Apr. 2025 DOI: 10.12180/j.issn.2096-7721.2025.04.025 发布日期:2025-05-09
关键词:人工耳蜗;机器学习;听觉言语;儿童

作者简介:

目的:探讨机器学习技术在人工耳蜗(CI)植入术后儿童听觉言语康复效果预测中的应用。方法:选取 2012 年 1 月— 2024 年 10 月首都医科大学附属北京儿童医院行 CI 植入术的 187 例儿童,收集其在开机时及开机后第 1、3、6、12、24、36 个月 的父母评估儿童听说能力表现问卷数据及临床相关指标。运用机器学习算法(支持向量机、随机森林和人工神经网络)进行建模, 并利用特征选择方法筛选影响听觉言语康复效果的重要影响因素。结果:人工神经网络、随机森林和支持向量机三种机器学习 方法构建预测模型的准确率分别为 74.91%、71.02%、68.20%。经特征筛选,CI 使用时间、开机月龄、性别、主要看护人受教 育程度、居住地、干预方式、术前助听器使用史共 7 个特征具有显著性(P<0.05)。结论:机器学习技术可有效预测 CI 植入 术后儿童听觉言语康复效果,为临床精准评估和个性化干预提供了新的工具与理论支持。

Objective: To explore the application of machine learning techniques in predicting auditory and speech rehabilitation outcomes for children after cochlear implantation. Methods: 187 children who underwent cochlear implantation at Beijing Children’s Hospital Affiliated to Capital Medical University from January 2012 to October 2024 were selected. Data from the parents’ evaluation of aural/oral performance of children questionnaire and clinical indicators were collected at device activation and 1, 3, 6, 12, 24, and 36 months after activation. Machine learning algorithms (Support Vector Machine, Random Forest, and Artificial Neural Network) were used to construct prediction models, with feature selection methods identifying key factors influencing rehabilitation outcomes. Results: The accuracy of prediction models constructed by Artificial Neural Network, Random Forest, and Support Vector Machine were 74.91%, 71.02%, and 68.20%, respectively. Feature selection revealed 7 significant predictors (P<0.05): usage time of CI, age at activation, gender, educational level of primary caregiver, residence location, cochlear implant laterality, and preoperative hearing aid use. Conclusion: Machine learning techniques can effectively predict auditory and speech rehabilitation outcomes in children after cochlear implantation, which provides a novel tool and theoretical support for precise clinical assessment and personalized intervention.

稿件信息

基金项目:国家重点研发计划项目(2023YFF1203504);北京市自然科学基金(7232059);高层次公共卫生技术人才建设专项(2022-3-016) 

Foundation Item: National Key R & D Plan Project of China (2023YFF1203504); Natural Science Foundation of Beijing (7232059); Highlevel Public Health Technical Personnel Construction Project(2022-3-016) 

引用格式:白杰,李颖,金欣,等 . 基于机器学习的人工耳蜗植入术后儿童听觉言语康复效果预测模型研究(附讲解视频)[J]. 机器人外科 学杂志(中英文),2025,6(4):655-659,666. 

Citation: BAI J, LI Y, JIN X, et al. Prediction model based on machine learning for auditory and speech rehabilitation outcomes in children  after cochlear implantation (with explanatory video) [J]. Chinese Journal of Robotic Surgery, 2025, 6(4): 655-659, 666. 

通讯作者(Corresponding Author):刘海红(LIU Haihong),Email:haihongliu6@aliyun.com

参考文献

[1] World Health Organization. World report on hearing[R/OL]. Geneva: WHO, 2021[2021-04-30]. https: //www.who.int/publications/i/item/worldreport-on-hearing. 

[2] Olusanya B O, Neumann K J, Saunders J E. The global burden of disabling hearing impairment: a call to action[J]. Bull World Health Organ, 2014, 92(5): 367-373. 

[3] Nordvik Ø, Laugen Heggdal P O, Brännström J, et al. Generic quality of life in persons with hearing loss: a systematic literature review[J]. BMC Ear Nose Throat Disord, 2018. DOI: 10.1186/s12901-018-0051-6. 

[4] Shield B. Evaluation of the social and economic costs of hearing impairment[R/OL]. A report for Hear, 2006[2021-04-30]. https: //www. hear-it.org/de/multimedia/Hear_It_Report_October_2006.pdf. 

[5] Carlyon R P, Goehring T. Cochlear implant research and development in the twenty-first century: a critical update [J]. Journal of the Association for Research in Otolaryngology: JARO, 2021, 22(5): 481-508. 

[6] Cosetti K, Waltzman S B. Outcomes in cochlear implantation: variables affecting performance in adults and children [J]. Otolaryngologic Clinics of North America, 2012, 45(1): 155-171. 

[7] Frosolini A, Franz I, Caragli V, et al. Artificial intelligence in audiology: a scoping review of current applications and future directions [J]. Sensors (Basel), 2024, 24(22): 7126. 

[8] Beam A L, Drazen J M, Kohane I S, et al. Artificial intelligence in medicine [J]. The New England Journal of Medicine, 2023, 388(13): 1220-1221. 

[9] 魏兴梅 , 薛书锦 , 高振橙 , 等 . 人工智能在人工耳蜗植入中的应用 [J]. 首都医科大学学报 , 2024, 45(6): 931-937. 

[10] 郭倩倩 , 陈雪清 , 孟超 , 等 . 常用听觉能力评估问卷临床应用比较 [J]. 中国耳鼻咽喉头颈外科 , 2018, 25(9): 485-489. 

[11] Ching T Y, Hill M. The Parents’ Evaluation of Aural/Oral Performance of Children (PEACH) scale: normative data [J]. Journal of the American Academy of Audiology, 2007, 18(3): 220-235. 

[12] 中华耳鼻咽喉头颈外科杂志编辑委员会 , 中华医学会耳鼻咽喉头 颈外科学分会 , 中国残疾人康复协会听力语言康复专业委员会 . 人 工耳蜗植入工作指南 (2013) [J]. 中华耳鼻咽喉头颈外科杂志 , 2014, 49(2): 89-95.

[13] Shafieibavani E, Goudey B O, Kiral I, et al. Predictive models for cochlear implant outcomes: performance, generalizability, and the impact of cohort size[J]. Trends in Hearing, 2021. DOI: 10.1177/23312165211066174. 

[14] Wilson B S, Tucci D L, Moses D A, et al. Harnessing the power of artificial intelligence in otolaryngology and the communication sciences [J]. Journal of the Association for Research in Otolaryngology: JARO, 2022, 23(3): 319-349. 

[15] Carlson M L, Carducci V, Deep N L, et al. AI model for predicting adult cochlear implant candidacy using routine behavioral audiometry [J]. American Journal of Otolaryngology, 2024, 45(4): 104337. 

[16] LU S, XIE J, WEI X, et al. Machine learning-based prediction of the outcomes of cochlear implantation in patients with cochlear nerve deficiency and normal cochlea: a 2-year follow-up of 70 children[J]. Frontiers in Neuroscience, 2022. DOI: 10.3389/fnins.2022.895560. 

[17] Feng G, Ingvalson E M, Grieco-calub T M, et al. Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients [J]. National Academy of Sciences (US), 2018, 115(5): E1022-E1031. 

[18] Tan L, Holland S K, Deshpande A K, et al. A semi-supervised support vector machine model for predicting the language outcomes following cochlear implantation based on pre-implant brain fMRI imaging [J]. Brain and Behavior, 2015, 5(12): e00391. 

[19] WENG J, XUE S, WEI X, et al. Machine learning-based prediction of the outcomes of cochlear implantation in patients with inner ear malformation [J]. European Federation of Oto-Rhino-Laryngological Societies, 2024, 281(7): 3535-3545. 

[20] Black J, Hickson L, Black B, et al. Prognostic indicators in paediatric cochlear implant surgery: a systematic literature review[J]. Cochlear Implants International, 2011, 12(2): 67-93. 

[21] Wieringen A V, Wouters J. What can we expect of normally-developing children implanted at a young age with respect to their auditory, linguistic and cognitive skills? [J]. Hearing Research, 2015. DOI: 10.1016/ j.heares.2014.09.002. 

[22] 冀飞 , 郗昕 , 洪梦迪 , 等 . 语前聋人工耳蜗植入患者听觉和言语康复 效果的问卷分级评估 [J]. 中华耳鼻咽喉科杂志 , 2004, (10): 12-16. 

[23] Goehring T, Bolner F, Monaghan J J, et al. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users[J]. Hearing Research, 2017. DOI: 10.1016/ j.heares.2016.11.012. 

[24] Gajeck T, Nogueira W A. Fused deep denoising sound coding strategy for bilateral cochlear implants [J]. IEEE Transactions on Bio-medical Engineering, 2024, 71(7): 2232-2242. 

[25] Wathour J, Govaerts P J, DeggouJ N. From manual to artificial intelligence fitting: two cochlear implant case studies[J]. Cochlear Implants Int, 2020, 21(5): 299-305.

本期文章
[1] 达芬奇 Xi 机器人辅助充气式纵隔镜食管癌切除术一例报道(附手术视频) [2] 基于加速康复外科理念的新护理模式在机器人辅助胸腔镜纵隔肿瘤切除术患儿中的应用 [3] 路径导向性护理与体温管理策略在机器人辅助腹腔镜下根治性前列腺切除术患者中的应用 [4] 基于计划行为理论的机器人辅助结直肠癌手术自我管理护理模型的应用 [5] “一对三阶”培训模式下达芬奇手术机器人专科护士学习曲线分析 [6] 虚拟现实技术用于机器人手术技能培训效果的系统评价与 Meta 分析 [7] 控制营养状态评分在预测机器人辅助食管癌根治术后并发症中的应用 [8] 基于机器学习的人工耳蜗植入术后儿童听觉言语康复效果预测模型研究(附讲解视频) [9] 3D-CT 影像技术辅助胸腔镜肺段切除术治疗非小细胞肺癌的疗效及预后分析 [10] 机器人辅助腹腔镜下自主神经保留的广泛子宫切除术在宫颈癌治疗中的应用 [11] 机器人辅助腋窝淋巴结清扫术治疗乳腺癌的疗效分析 [12] 双医生控制台下术中转移设备对提高达芬奇手术机器人使用效率的初步探索 [13] 上肢康复机器人联合双侧序贯 rTMS 在促进脑卒中患者康复中的效果 [14] 上肢康复机器人辅助训练对老年脑卒中患者上肢功能的影响 [15] 下肢康复机器人联合中频脉冲治疗仪在脑卒中踝运动功能障碍患者中的应用 [16] 生物反馈电刺激联合康复机器人在脑卒中后下肢功能障碍患者中的应用 [17] 机器人手术系统在手术室护理领域的应用与研究进展 [18] 机器人辅助手术在消化外科的应用现状及发展前景 [19] 基于麻醉深度与肌松监测仪监测指导下的麻醉方式在经口腔前庭入路机器人辅助甲状腺切除患者中的应用 [20] 机器人辅助椎体成形术后患者麻醉恢复室监测治疗时间的影响因素分析 [21] 前锯肌平面阻滞促进腋乳入路机器人辅助甲状腺手术患者的快速康复(附手术视频) [22] 股骨头坏死的机器人辅助护理质量评价体系构建 [23] 多学科协作加速康复护理对机器人辅助强直性脊柱炎全髋关节置换术患者的影响 [24] 加速康复外科理念下无缝隙护理方案在机器人辅助经椎间孔腰椎椎间融合术中的应用 [25] 骨科手术机器人的应用现状与未来趋势:基于 VOSviewer 和 CiteSpace 的文献计量学研究 [26] 骨科手术机器人辅助 Wiltse 入路椎弓根螺钉固定术对脊柱骨折合并脊髓损伤的近远期疗效分析 [27] 骨科手术机器人在脊柱外科手术中的应用及研究进展 [28] 机器人辅助经前侧通用入路全胸膜腔闭锁下右肺上叶后段切除术一例报道(附手术视频) [29] 国产机器人手术系统在胆囊切除术中的应用效果 [30] 信息识别技术下国产手术机器人在外科手术中的应用效果评价 [31] 国产多孔手术机器人辅助胸腔镜下肺段切除术:国内首例报道(附手术视频) [32] 国产单孔蛇形臂机器人辅助优化后入路根治性前列腺切除术的初步经验(附手术视频)
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈