[1] Lavallée S, Sautot P, Troccaz J, et al. Computer-assisted spine surgery: a technique for accurate transpedicular screw fixation using CT data and a 3-D optical localizer[J]. J Image Guid Surg, 1995, 1(1): 65-73.
[2] Nolte L P, Visarius H, Arm E, et al. Computer-aided fixation of spinal implants[J]. J Image Guid Surg, 1995, 1(2): 88-93.
[3] Joskowicz L, Milgrom C, Simkin A, et al. FRACAS: a system for computer-aided image-guided long bone fracture surgery[J]. Comput Aided Surg, 1998, 3(6): 271-288.
[4] Russell T, Patrick J, Louis W, et al. A steady-hand robotic system for microsurgical augmentation[J]. Lecture Notes in Computer Science, 1999, 1679(1): 1031-1041.
[5] Luo X, Mori K, Peters T M. Advanced endoscopic navigation: surgical big data, Methodology and Applications[J]. Annu Rev Biomed Eng, 2018. DOI: 10.1146/annurev-bioeng-062117-120917
[6] Ewurum C H, Guo Y, Pagnha S, et al. Surgical navigation in orthopedics: workflow and system review[J].Adv Exp Med Biol, 2018, 1093: 47-63. DOI: 10.1007/978-981-13-1396-7_4.
[7] de Siebenthal J, Grützner P A, Zimolong A, et al. Assessment of video tracking usability for training simulators[J]. Comput Aided Surg, 2004, 9(3): 59-69.
[8] Clarke J V, Deakin A H, Nicol A C, et al. Measuring the positional accuracy of computer assisted surgical tracking systems[J]. Comput Aided Surg, 2010, 15(1-3): 13-18.
[9] Song S J, Park C H, Bae D K. What to know for selecting cruciate-retaining or posterior-stabilized total knee arthroplasty[J]. Clinics in Orthopedic Surgery, 2019, 11(2):142.
[10] Jaramaz B, DiGioia A M 3rd, Blackwell M, et al. Computer assisted measurement of cup placement in total hip replacement[J]. Clin Orthop Relat Res, 1998. DOI: 10.1097/00003086-199809000-00010.
[11] DiGioia A M, Jaramaz B, Blackwell M, et al. The Otto Aufranc Award. Image guided navigation system to measure intraoperatively acetabular implant alignment[J]. Clin Orthop Relat Res, 1998. DOI: 10.1097/00003086-199810000-00003.
[12] Ulivi M, Orlandini L C, Meroni V, et al. Intraoperative validation of bone cut accuracy of a pinless smart touch-screen navigation system device in total knee arthroplasty[J]. Int J Med Robot, 2019, 15(5): e2030.
[13] Jolles B M, Genoud P, Hoffmeyer P. Computer-assisted cup placement techniques in total hip arthroplasty improve accuracy of placement[J]. Clin Orthop Relat Res, 2004. DOI:10.1097/01.blo.0000141903.08075.83
[14] Sugano N, Takao M, Sakai T, et al. Does CT-based navigation improve the long-term survival in ceramicon-ceramic THA?[J]. Clin Orthop Relat Res, 2012, 470(11): 3054-3059.
[15] Nashikkar P S, Scholes C J, Haber M D. Role of intraoperative navigation in the fixation of the glenoid component in reverse total shoulder arthroplasty: a clinical case-control study[J]. J Shoulder Elbow Surg, 2019, 28(9): 1685-1691.
[16] YAO J, DONG B, SUN J, et al. Accuracy and reliability of computer-aided anatomical measurements for vertebral body and disc based on computed tomography scans[J]. Orthop Surg, 2020, 12(4): 1182-1189.
[17] Kraus M, Weiskopf J, Dreyhaupt J, et al. Computeraided surgery does not increase the accuracy of dorsal pedicle screw placement in the thoracic and lumbar spine: a retrospective analysis of 2, 003 pedicle screws in a level I trauma center[J]. Global Spine J, 2015, 5(2): 93-101.
[18] Hlubek R J, Bohl M A, Cole T S, et al. Safety and accuracy of freehand versus navigated C2 pars or pedicle screw placement[J]. Spine J, 2018, 18(8): 1374- 1381.
[19] YU Z, ZHANG G, CHEN X, et al. Application of a novel 3D drill template for cervical pedicle screw tunnel design: a cadaveric study[J]. Eur Spine J, 2017, 26(9): 2348-2356.
[20] SUN J C, SUN K Q, SUN S X, et al. Computer-assisted virtual operation planning in anterior controllable anterior-displacement and fusion surgery for ossification of the posterior longitudinal ligament based on actual computed tomography data[J]. Clin Neurol Neurosurg, 2019. DOI: 10.1016/j.clineuro.2018.12.019.
[21] Walker C T, Kakarla U K, Chang S W, et al. History and advances in spinal neurosurgery[J]. J Neurosurg Spine, 2019, 31(6): 775-785.
[22] D’Souza M, Gendreau J, Feng A, et al. Roboticassisted spine surgery: history, efficacy, cost, and future trends[J]. Robot Surg, 2019. DOI: 10.2147/RSRR. S190720.
[23] Hamelinck H K, Haagmans M, Snoeren M M, et al. Safety of computer-assisted surgery for cannulated hip screws[J]. Clin Orthop Relat Res, 2007. DOI: 10.1097/01.blo.0000238815.40777.d2.
[24] Farah K, Meyer M, Prost S, et al. Cirq® robotic assistance for minimally invasive C1-C2 posterior instrumentation: report on feasibility and safety[J]. Oper Neurosurg(Hagerstown), 2020. DOI: 10.1093/ons/ opaa208.
[25] HE M, HAN W, ZHAO C P, et al. Evaluation of a Bi-planar robot navigation system for insertion of cannulated screws in femoral Neck fractures[J]. Orthop Surg, 2019, 11(3): 373-379.
[26] Krettek C, Geerling J, Bastian L, et al. Computer aided tumor resection in the pelvis[J]. Injury, 2004. DOI: 10.1016/j.injury.2004.05.014.
[27] Wong K C, Kumta S M. Computer-assisted tumor surgery in malignant bone tumors[J]. Clin Orthop Relat Res, 2013, 471(3): 750-761.
[28] Gerbers J G, Stevens M, Ploegmakers J J, et al. Computer-assisted surgery in orthopedic oncology [J]. Acta Orthop, 2014, 85(6): 663-669.
[29] Ritacco L E, Milano F E, Farfalli G L, et al. Accuracy of 3-D planning and navigation in bone tumor resection[J]. Orthopedics, 2013, 36(7): e942-e950.
[30] Aponte-Tinao L, Ritacco L E, Ayerza M A, et al.Does intraoperative navigation assistance improve bone tumor resection and allograft reconstruction results?[J]. Clin Orthop Relat Res, 2015, 473(3): 796-804.
[31] Young P S, Bell S W, Mahendra A. The evolving role of computer-assisted navigation in musculoskeletal oncology[J]. Bone Joint J, 2015, 97-B(2): 258-264.
[32] Tiwari A, Yadlapalli A, Verma V. Computer navigation assisted tumor surgery for internal hemipelvectomyEarly experience[J]. J Clin Orthop Trauma, 2020. DOI: 10.1016/j.jcot.2020.08.016.
[33] YANG Y, LI Y, ZHANG Q, et al. A case-control study of computer navigation assisted resection of primary sacral chordoma above sacrum 3 level[J]. J Bone Oncol, 2020. DOI: 10.1016/j.jbo.2020.100303.
[34] Musahl V, Burkart A, Debski R E, et al. Accuracy of anterior cruciate ligament tunnel placement with an active robotic system: a cadaveric study[J]. Arthroscopy, 2002, 18(9): 968-973.
[35] Picard F, DiGioia A M, Moody J, et al. Accuracy in tunnel placement for ACL reconstruction. comparison of traditional arthroscopic and computer-assisted navigation techniques[J]. Comput Aided Surg, 2001, 6(5): 279-289.
[36] Burkart A, Debski R E, McMahon P J, et al. Precision of ACL tunnel placement using traditional and robotic techniques[J]. Comput Aided Surg, 2001, 6(5): 270- 278.
[37] Klos T V, Habets R J, Banks A Z, et al. Computer assistance in arthroscopic anterior cruciate ligament reconstruction[J]. Clin Orthop Relat Res, 1998. DOI: 10.1097/00003086-199809000-00009.
[38] Luites J W, Wymenga A B, Blankevoort L, et al. Accuracy of a computer-assisted planning and placement system for anatomical femoral tunnel positioning in anterior cruciate ligament reconstruction[J]. Int J Med Robot, 2014, 10(4): 438- 446.
[39] Barrett I, Ramakrishnan A, Cheung E. Safety and efficacy of intraoperative computer-navigated versus non-navigated shoulder arthroplasty at a tertiary referral[J]. Orthop Clin North Am, 2019. DOI: 10.1016/j.ocl.2018.08.004.