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摘  要  目的：估计肘关节角度和提高模型的速度和精度。方法：建立并研究基于表面肌电信号（Surface 

electromyogram，sEMG） 的 Elman 神 经 网 络（Elman neural network，ENN）， 通 过 在 肱 二 头 肌（Biceps muscle，

BM）和肱三头肌（Triceps muscle，TM）的皮肤表面上放置电极来采集 sEMG 信号，并通过惯性测量单元（Inertial 

measurement unit，IMU）记录实际的肘关节角度。结果：通过实验结果以及基于模型阶数和隐层神经元数量的参数讨论，

进一步证明了 ENN 可达到的最小均方根（Root mean square，RMS）误差为 18.1899 度。结论：在最优的参数下应用

ENN估计肘关节角度时，均方根误差达到了可控范围。理论分析和实验结果都证明ENN在估计关节角度方面是有效的。
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Methods: The elman neural network (ENN) based on surface electromyogram (sEMG) was established and investigated. 
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The sEMG signals were collected by the electrodes placed on the skin surfaces of biceps muscle (BM) and triceps muscle 

(TM), and the actual elbow joint angle was recorded by an inertial measurement unit (IMU). Results: Theoretical analysis 

indicates that the ENN is feasible to be employed for estimating the elbow joint angle. Experimental results and the parameter 

discussion based on the model order and the number of hidden layer neurons further indicate that the minimum RMS error of 

ENN is 18.1899 degree. Conclusion: The RMS error is controllable when the ENN is used to estimate the elbow joint angle 

under the optimal parameter. Theoretical analysis and experimental results shows that the ENN is effective in estimation of 

joint angles.
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With the population aging in China, the number 

of physical disabilities caused by stroke, spinal cord 

injury, brain trauma and other reasons has increased 

rapidly. Among them, stroke is the main disease that 

gives rise to local skeletal muscle dysfunction in the 

upper limbs[1]. At present, the main treatment methods 

are physical therapy and robotic rehabilitation way. 

With the rapid development of robots in the medical, 

military, industrial and other neighborhoods[2-4], the 

rehabilitation robot therapy will become simpler and 

more efficient. Human-computer interaction control 

method and active motion intention recognition are 

two core techniques in the field of rehabilitation robot 

research[5-7].

Human motion intentions are generated in the 

brain and transmitted to joint motion through multiple 

complex neural subsystems. It requires the upper limb 

rehabilitation robots to collect human biological signals 

and recognize human motion intentions accurately. 

Specifically, the biological signals usually include 

electroencephalogram (EEG), electrooculogram (EOG), 

electromyography (EMG) and mechanical signals[8-12]. 

In recent years, there are many methods, such as 

support vector machine (SVM)[13], the Hill-based 

muscle model[14-15] and state-space models[15-16], to be 

applied to estimate the motion intention. Although a 

few algorithms have been developed to estimate the 

human motion intentions based on the EEG, EOG 

and EMG, the existing models still have room for 

improvement in data acquisition, data processing, 

prediction accuracy and stability. Therefore, 

researching on the data processing, accuracy and 

rapidity of algorithms still have a wide range of 

significance. In this paper, the ENN will be established 

to estimate the elbow joint angle of one able-bodied 

subject. The theoretical analysis and experiments 

indicate the superior performance of the model.

With the widespread application of neural 

networks in the fields of science and engineering[17-21], 

many neural networks have been employed in the 

recognition of human-computer interaction. A back 

propagation neural network (BPNN) was established to 

estimate the joint angles of hip, knee, and ankle from 

the sEMG signals[22]. Analogously, Aung Y M et al. 

designed the BP neural network to predict the joint 

angles of shoulder and elbow using sEMG signals[23]. 

An artificial neural network of radial basis function 

(RBFNN) was developed to estimate the joint angles 

of hip, knee, and ankle from the sEMG signals of 

rectus femoris, lateral femoral muscle and extensor 

halluces[24]. As a contrast, both BPNN and RBFNN 

are static feedforward neural networks, although 

the BPNN is simpler in structure than RBFNN, the 

stationary learning rate and unstable learning and 
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memory ability will make BPNN inferior to RBFNN 

in training rate and adaptive ability. However, 

ENN, a kind of dynamic recursive neural network, 

has increased the receiving layers to maintain the 

advantages of short-term memory, rapid training rate 

and strong network stability[25].

In this paper, the ENN is developed to estimate 

the elbow joint angle. Firstly, the sEMG signals of BM 

and TM was collected from an able-bodied subject 

by the angle sensor IMU and biopac system, then, 

the raw sEMG signals was processed by high-pass 

filter and low-pass filter to remove unnecessary noise. 

Additionally, the order of model and the number 

of hidden layer neurons were discussed to obtain 

the optimal parameters, which could guarantee the 

optimal performance of the model during the neural 

network training. Ultimately, the evaluation index 

RMS error of the model would further indicate the 

excellent performance of the ENN in estimating the 

elbow joint angle.

1  Experimental procedures and 
methods

1.1  Data acquisition

To acquire more accurate experimental data, a 

healthy subject (female, 26 years old) was selected 

to participate in the arm flexion and extension 

exercise experiment in this experiment. According to  

DING Q© et al.[16], the elbow joint of the arm mainly 

passed through the BM (stretching/contraction) and 

TM (stretching/contraction) to achieve flexion and 

extension. Therefore, the effective sEMG signals to be 

collected in this experiment are mainly from BM and 

TM. In addition, the IMU module should be attached 

to the forearm and rotated around the x-axis to collect 

the joint angle of the elbow joint. The experimental 

procedures and equipment are shown in Figure 1 and 

Figure 2. The testing process basically includes the 

following steps: 

a. Clean BM and TM with alcohol, then attach 

Figure 1  Data acquisition during the arm (flexion/extension) experiment

A. Arm extension experiment; B. Arm flexion experiment.

A B

Electrodes on the skin surface of BM Angle sensor (IMU)

Biopac signal transmission module

Electrodes on the skin surface of TM
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Figure 2  The angle sensor IMU and the Biopac signal transmission module 

A. Biopac signal transmission module; B. IMU.

A B

Figure 3  The subjects’ data recorded during arm flexion and extension experiments 

A. Raw sEMG signals; B. Elbow joint angle.

A B

electrodes to skin surfaces of BM and TM.

b. Bind the angle sensor IMU and the Biopac 

signal transmission module to the subject’s arm, then, 

connect the Biopac signal transmission module with 

the electrode pad. At the same time, the Biopac signal 

transmitting module and the Biopac signal receiving 

module shall be connected successfully. The IMU and 

Biopac signal transmission modules are shown in Figure 2.

c. Open MiniIMU and Biopac signal acquisition 

system on the computer for synchronous data acquisition 

of elbow joint angle signal and sEMG signal.

Since the collection of sEMG signals could be 

affected by sweat, body temperature and so on. The 

skin surfaces of the BM and TM shall be cleaned 

to reduce the distortion on data. In addition, three 

disposable electrode slices shall be attached on the 

skin surfaces of the BM and TM in this experiment. 

Specially, the distance between each pair of 

electrodes is 2~3cm. After the above operations, 

the data recorded during the arm flexion and 

extension experiments can be obtained as shown in 

Figure 3.
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1.2  Signals processing

This study finds that the sEMG signals and 

elbow joint angle change regularly with arm flexion 

and extension in Figure 3. Nevertheless, the raw 

sEMG signals of BM and TM are contaminated by 

noises during data acquisition. Generally speaking, 

the noises may be derived from the inherent noise 

of the equipment, the test environment, and the 

electromagnetic environment. Among them, the 

inherent noise of equipment usually includes 50Hz 

industrial frequency noise, DC bias et al. The noise 

in the testing environment principally comes from 

the sweat of the skin, body hair and temperature. 

Similarly, considering the signal transmitters of 

Biopac equipment utilize wireless transmission 

devices for information transmission. Therefore, in 

order to avert electromagnetic interference between 

cables and wireless signals, the IMU wired sensors 

are employed to supersede the wireless to reduce 

electromagnetic interference between wireless 

devices.

Boxtel thinks it can be obtained that the 

ef fect ive f requency of  the above raw sEMG 

signal is 0~500Hz[26]. Taking into account that an 

industrial frequency of 50Hz and the frequency 

range of 0~20Hz generated by the motor unit[27]. 

Therefore ,  a  high-pass  f i l ter  wi th  a  cut-of f 

frequency of 500Hz is utilized to eliminate high 

frequencies above 500Hz, and a low-pass filter 

with a cut-off frequency of 20Hz is employed 

to  remove the interference frequency range 

of 0~20Hz in the course of signal processing. 

Meanwhile, the industrial frequency of 50Hz 

needs to be taken out by a notch filter with cut-off 

frequency of 50Hz.

Although an effective sEMG signal can be 

obtained after filtering the raw sEMG signal, the 

amplitude of the processed signal will oscillate 

frequently. Therefore, the signals need to be further 

processed by the full-wave rectification, and the 

formula can be described as following.

 sEMGr(n)=|sEMGp(n)|	 (1)

Where sEMGp(n) is the nth amplitude of 

the processed sEMG signals, sEMGr(n) is the nth 

amplitude sample of the sEMG signals obtained after 

full-wave rectification.

It’s worth pointing out that the sampling 

frequency of sEMG signals is 2kHz, and the sampling 

frequency of the elbow joint angle is 100Hz. 

Therefore, in order to keep the sampling frequency of 

both, the sEMG signals are sub-sampled to match the 

sampling frequency of elbow joint angle, and the sub-

sampled process can be expressed as

 	 (2)

Where N is the number of sub-sampling, and 

sEMGs(n) is the sEMG signals after sub-sampling.

After the above signal processing, the processed 

signals of sEMG can be shown as Figure 4.

1.3  ENN establishment

Suppose that, the data acquired during the arm 

flexion and extension experiment can be described as 

follows.

 (3)

Where θ is the elbow joint angle measured by 

IMU, ai signifies the processed sEMG signals of BM 

and TM, and the k represents the channel number of 

Biopac equipment. Since the sEMG signals collected 

from BM and TM, the channel number is 2 in the 
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experiment. As shown in Figure 3, the amplitude of 

the sEMG signal increases with muscle contraction, 

and the elbow joint angle changes with the muscle 

contraction or stretching. Since the relationship 

between muscle (contraction/stretching) and sEMG 

signals is nonlinear, the relationship between joint 

angle and sEMG signals can be regarded as nonlinear. 

The nonlinear function can be expressed as follows.

θe(i)=F(a1, i, …, a1, i-m+1; a2, i, …, a2, i-m+1; 

     ak, i, …, ak, i-m+1)  i=m, …, t		  (4)

Where θe(i) is the elbow joint angle estimated 

by the model at the i th time, F signifies the 

undetermined nonlinear function, and m denotes the 

order of the model.

In this paper, ENN, a typical dynamic recurrent 

neural network, is established to estimate the elbow 

joint angle. As can be seen from Figure 5-A, the 

structure of ENN comprises four parts that input 

layer, hidden layer, receiving layer and output layer. 

Compared with BPNN, receiving layer was added 

to ENN to memorize the output value of the hidden 

layer unit at the previous moment and return it to the 

input of ENN. The structure of ENN will increase the 

sensitivity of the network to historical data, so that the 

dynamic information can be better processed.

The state space expression of ENN can be 

described as follows.

    	 (5)

Where θe is the elbow joint angle estimated by 

the ENN, x denotes the intermediate layer node unit 

vector, u represents the input vector and xe for the 

feedback state vector. In addition, ω1, ω2 and ω3 are 

respectively the weights coefficient from the receiving 

layer to the hidden layer, the input layer to the 

hidden layer and the hidden layer to the output layer. 

Φ (.) and Ψ (.) represent the transfer functions of the 

output layer neurons and the hidden layer neurons 

respectively.

In this experiment, the inputted ai is a matrix 

consisted of the processed signals of BM and TM, and 

the number of the input layer neurons depends on the 

number of muscles and the order of the model. The 

number of muscles to be collected is 2 and the model 

order m is uncertain, the number of the input layer 

neurons is k=2*m. Similarly, the number of hidden 

layer neurons n is also variable, and the output of 

ENN is elbow joint angle. During the ENN training, 

the first 5000 times of processing sEMG signals of the 

BM and TM are utilized for experiments, of which the 

first 2 500 times were served as training and the last 

2 500 times as testing. Ultimately, in order to better 

evaluate the performance of the model, the RMS error 

is used to evaluate the accuracy of the model, which 

can be expressed as follows.

 	 (6)

Figure 4  The sEMG signals of BM and TM after signal 

processing
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Where θ(i) denotes the actual elbow joint angle 

measured by the IMU.

Hereto, the subsections of data acquisition, 

signals processing and ENN establishment have been 

introduced in the section of experimental and method. 

In order to better explain the prediction process, the 

experimental process, learning and training process 

of ENN can be shown as Figure 5-B.

2  Results and discussion

In this section, the ENN is applied for the 

estimation of elbow joint angle, it is worth mentioning 

that an appropriate m and n are significant for the 

elbow joint angle estimation. Therefore, an optimal 

number of hidden layer neurons n and order m need 

to be selected to achieve the accurate estimation of 

elbow joint angle by ENN.

Figure 5  The schematic diagram of ENN

A. Algorithm structure of ENN; B. Algorithm flowchart of ENN.

A

B
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2.1  Discussion on parameters

From a quantitative perspective, m=10, 20, …, 

60 an n=10, 20, …, 100 will be taken into account to 

acquire the optimal number of hidden layer neurons 

and the order in the ENN training process. The RMS 

error of ENN with different number of hidden layer 

neurons and different order can be seen in Figure 6 

and Table 1.

The ENN achieves the optimal performance 

when the number of hidden layer neurons n=60 and 

the order m=40 (Figure 6-A). Since the model has 

achieved the optimal performance at m=40, hence, 

the figures of RMS error with different m are omitted 

here. Additionally, the RMS error is smallest at n=60 

and m=40 (Figure 6-B). It indicates that choosing an 

appropriate m and n is an important step to estimate 

elbow joint angle with ENN. For better comparison, 

the RMS error value of ENN with different m and n 

are listed in the Table 1. As we can see from Figure 6 

and Table 1 that the minimum RMS error is 18.1899 

degree at m=40 and n=60.

2.2  Model comparison and result analysis

After selecting the optimal number of hidden 

layer neurons at  n=60 and the order m=40. 

Subsequently, the ENN estimation of elbow joint 

angle can be seen in Figure 7-A. The estimated 

elbow joint angle (EEJA) tracks the actual elbow joint 

angle (AEJA) smoothly (Figure 7-A). In addition, the 

Minimum RMS error is 18.1899 and the optimal time 

is 9.3034s in Table 2. Therefore, the experimental 

results have proved that ENN is successful and 

effective in elbow joint angle estimation.

In order to further demonstrate the superiority of 

ENN in data prediction, the RBFNN and BPNN are 

used to estimate the elbow joint angle for comparison. 

The optimal parameters m and n have been discussed 

in the estimation of joint angles[22, 24]. Therefore, to 

save layout space, the discussion of the parameters 

Table 1  The RMS error of elbow joint angle estimation with different number of hidden layer neurons and 

different order

n
RMS

m=10 m=20 m=30 m=40 m=50 m=60

10 30.069 8 25.121 2 33.609 0 28.593 9 26.597 5 34.348 1

20 29.203 0 23.846 7 22.584 1 21.466 9 24.974 4 22.889 0

30 25.172 7 23.188 4 22.279 1 19.891 0 23.678 6 25.316 0

40 25.453 1 25.020 0 21.081 9 20.732 6 21.211 0 22.124 0

50 24.716 1 22.797 5 19.184 5 19.563 0 20.226 2 21.512 8

60 25.184 5 22.484 1 20.123 1 18.189 9 21.491 3 21.679 7

70 26.622 2 23.224 0 21.193 0 21.164 1 20.702 6 20.872 6

80 26.404 9 21.089 6 19.339 8 19.758 4 20.501 2 21.661 7

90 28.224 4 20.454 4 20.353 1 20.526 5 21.455 5 21.031 2

100 25.674 0 22.110 7 20.817 3 20.571 5 21.020 4 21.343 7
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of the RBFNN and BPNN in estimating the elbow 

joint angle are omitted here. It is worth noting that 

the optimal parameters m=20 and n=20 are selected 

for elbow joint angle estimation with BPNN and 

RBFNN. The elbow joint angle estimated by RBFNN 

can be seen in Figure 7-B, and the elbow joint angle 

estimation of BPNN is shown in Figure 7-C.

According to the Figure 7 and Table 2, it can 

be summarized that the RBFNN and BPNN can also 

be used to estimate the elbow joint angle, but ENN is 

superior to RBFNN and BPNN in accuracy.

Table 2  Comparisons between time and RMS error 

with ENN, RBFNN and BPNN

ENN RBFNN BPNN

time(s) 9.303 4 9.477 1 7.326 1

RMS(degree) 18.189 9   21.067 6 21.476 6

3  Conclusions

In this paper, based on the sEMG signals of BM 

and TM, the ENN has been established, analyzed 

and investigated on estimating the elbow joint angle. 

Experimental results have testified that the proposed 

model is efficient in estimating the elbow joint angle. 

It is worth mentioning that signal processing and 

discussion on parameters m and n are still crucial 

part in the experiment. The raw sEMG signals need 

to be processed and sub-sampled to get a series of 

available signal that can be used as input of the ENN. 

After some experiments and comparisons, it can 

be obtained from Figure 6, Figure 7-A and Table. 

I that the ENN revealed the optimal performance 

at m=40 and n=60, and the minimum RMS error is 

18.1899 degree. So far, all theoretical analysis and 

experimental results proved that the ENN is effective 

in estimating joint angles.

For the future direction, the spinal cord injury 

and stroke patients will be invited to take part in the 

data acquisition, then, multiple joint angles including 

shoulders, elbows and wrists will be estimated by the 

ENN. In addition, the ENN can also be applied to 

predict the joint angles of lower limbs including hips, 

knees and ankles.

Figure 6  The RMS errors of ENN with different m and n during the arm (flexion/extension) exercise for one able-
bodied subject 

A. RMS error of ENN with m=40 and different n; B. RMS error of ENN with n=60 and different m.

A B
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Figure 7  The predicted value of human upper limb elbow joint angle obtained from different models

A. ENN with m=40 and n=60; B. RBFNN with m=20 and n=20; C. BPNN with m=20 and n=20.

A B

C
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